Limited simultaneous nitrification-denitrification (SND) in aerobic granular sludge systems treating municipal wastewater: Mechanisms and practical implications

The development of anoxic zones is driven by the utilisation of oxygen in the upper layers of the granule leading to transport limitations of oxygen inside the granule; this effect is closely linked to granule size and wastewater composition. Development of anoxic zones during the aerobic phase is l...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Layer, M.
Đồng tác giả: Villodres, M.G.
Định dạng: BB
Ngôn ngữ:English
Thông tin xuất bản: 2021
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/10451
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
Mô tả
Tóm tắt:The development of anoxic zones is driven by the utilisation of oxygen in the upper layers of the granule leading to transport limitations of oxygen inside the granule; this effect is closely linked to granule size and wastewater composition. Development of anoxic zones during the aerobic phase is limited for small granules at constant aeration at bulk dissolved oxygen (DO) concentration of 2 mgO2 L−1, and anoxic zones only develop during a brief period of the aerated phase for large granules. Modelling results further indicate that a large fraction of electron-donors are actually utilised in aerobic rather than anoxic redox zones – in the bulk or at the granule surface. Thus, full SND cannot be achieved with AGS treating low strength municipal wastewater if a constant DO is maintained during the aeration phase. Optimised aeration strategies are therefore required. 2-step and alternating aeration are tested successfully using mathematical modelling and increase TN removal to 40–79%, without compromising nitrification, and by shifting electron-donor utilisation towards anoxic redox conditions.