Determination of the relative macroporosity and the effective aggregate width for different macropore geometries with disk infiltrometers

The computation of ξ accounts for differences in the macropore area and macropore water flow between noncylindrical and cylindrical shapes. A total of 15 combinations of macropore width and effective aggregate width were used to construct the geometrical figures and compute both wf_nc and wf_c. For...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Urbina, C.A.F.
Đồng tác giả: van Dam, J.C.
Định dạng: BB
Ngôn ngữ:English
Thông tin xuất bản: 2020
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/10001
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
Mô tả
Tóm tắt:The computation of ξ accounts for differences in the macropore area and macropore water flow between noncylindrical and cylindrical shapes. A total of 15 combinations of macropore width and effective aggregate width were used to construct the geometrical figures and compute both wf_nc and wf_c. For the cylindrical, ring, and rectangular slab shapes, the macropore water flow was solved using analytical solutions. For the hexagonal and brick shapes, the macropore water flow was solved numerically using COMSOL Multiphysics. Remarkably, the computed ξ was constant and equal to 1.5 for all four noncylindrical shapes under analysis. We show that the solution is exact for laminar flow under saturated conditions in the macropores with a rigid and wettable matrix. This methodology enables the derivation of a better estimate of wf and dag from disk infiltrometer data that include different macropore geometries. This information is crucial for the setup of dual‐permeability models in risk assessments and detailed studies.