A Novel Machine Learning Method Based Approach for Li-Ion Battery Prognostic and Health Management
Safety accidents caused by Lithium-ion (Li-ion) batteries are numerous in recent years. Therefore, more and more attention has been drawn to the Remaining Useful Life (RUL) prediction and health status monitoring for Li-ion batteries. This paper proposes a deep learning method that combines the Forg...
Lưu vào:
Tác giả chính: | |
---|---|
Đồng tác giả: | |
Định dạng: | BB |
Ngôn ngữ: | en_US |
Thông tin xuất bản: |
IEEE Explore
2020
|
Chủ đề: | |
Truy cập trực tuyến: | http://tailieuso.tlu.edu.vn/handle/DHTL/10011 |
Từ khóa: |
Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
|
Tóm tắt: | Safety accidents caused by Lithium-ion (Li-ion) batteries are numerous in recent years. Therefore, more and more attention has been drawn to the Remaining Useful Life (RUL) prediction and health status monitoring for Li-ion batteries. This paper proposes a deep learning method that combines the Forgetting Online Sequential Extreme Learning Machine (FOS-ELM) with the Hybrid Grey Wolf Optimizer (HGWO) algorithm and attention mechanism for the Prognostic and Health Management (PHM) of Li-ion battery. First, we use the Variational Mode Decomposition (VMD) to denoise the raw data before the training. Then the key parameters optimization of the FOS-ELM model based on the HGWO algorithm is introduced. Finally, we apply the attention mechanism to further improve the accuracy of the algorithm. Compared with traditional neural network methods, the method proposed in this paper has higher efficiency and accuracy. |
---|