An empirical soil water retention model based on probability laws for pore‐size distribution
This study improved and expanded on the traditional BCC models. Specifically, the total water retention was treated as a weighed superposition of capillary and adsorptive components. We proposed a mathematical continuous expression for water retention from saturation to oven dryness, which also allo...
Lưu vào:
Tác giả chính: | |
---|---|
Đồng tác giả: | |
Định dạng: | BB |
Ngôn ngữ: | English |
Thông tin xuất bản: |
2021
|
Chủ đề: | |
Truy cập trực tuyến: | http://tailieuso.tlu.edu.vn/handle/DHTL/10055 |
Từ khóa: |
Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
|
Tóm tắt: | This study improved and expanded on the traditional BCC models. Specifically, the total water retention was treated as a weighed superposition of capillary and adsorptive components. We proposed a mathematical continuous expression for water retention from saturation to oven dryness, which also allowed for a partition of capillary and adsorptive retention. We further evaluated six capillary retention functions using different probability laws for pore‐size distribution—namely, the log‐logistic, Weibull, lognormal, two‐parameter van Genuchten (VG), three‐parameter VG (or Dagum), and Fredlund–Xing (FX) distributions. Model testing against 144 experimental data showed better agreement of the proposed model with experimental observations than the traditional approaches that use the residual water content. The Dagum and FX distributions, which have one more degree of freedom, provided better agreement with experimental data than the other four distributions. The log‐logistic and lognormal distributions fitted the experimental data better than the Weibull and VG distribution for loam soils. In addition, the fitted weighting factor w using the log‐logistic and lognormal distributions better correlated to soil clay content than the other four distributions. Our study suggests that the log‐logistic and lognormal distributions are more suitable to model soils’ pore‐size distribution than other tested distributions. |
---|