Application of deep learning in water surface detection for Dong Hoi city using Sentinel-1 images

Efficient water resource management is a critical mandate for governmental authorities, as it directly impacts the effective utilization of this invaluable natural resource. The expeditious and accurate extraction of water surfaces significantly impacts governmental decision-making. Leveraging the a...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Nguyen Cam Van
Đồng tác giả: Dinh Viet Tu
Định dạng: BB
Ngôn ngữ:English
Thông tin xuất bản: Thuy loi University 2024
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/13519
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
Mô tả
Tóm tắt:Efficient water resource management is a critical mandate for governmental authorities, as it directly impacts the effective utilization of this invaluable natural resource. The expeditious and accurate extraction of water surfaces significantly impacts governmental decision-making. Leveraging the advanced capabilities of high-resolution satellite imagery and the precise orbital data return, this study employs state-of-the-art deep learning techniques to enhance the efficiency of water surface detection. Specifically, Sentinel-1 data acquired from Google Earth Engine is utilized as a primary input for proposed machine-learning models. With the satellite images covering the entire of Quang Binh province, the analysis detects 15.96 km of water surfaces along the Nhat Le River and 2.8 km2 surface area of the Phu Vinh reservoir. The evaluation metrics, i.e., Overall Accuracy and Kappa, approach 0.9 approximately, indicate the robustness and potential of the results.