An open-source semi-automated processing chain for urban obia classification

This study presents the development of a semi-automated processing chain for OBIA urban land-cover and land-use classification. Implemented in Python and relying on existing open-source software GRASS GIS and R. The complete tool chain is available in open-access and adaptable to specific user needs...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Grippa, T.
Định dạng: BB
Ngôn ngữ:eng
Thông tin xuất bản: 2020
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/4433
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
Mô tả
Tóm tắt:This study presents the development of a semi-automated processing chain for OBIA urban land-cover and land-use classification. Implemented in Python and relying on existing open-source software GRASS GIS and R. The complete tool chain is available in open-access and adaptable to specific user needs. For automation purpose, we developed two GRASS GIS add-ons allowing (1) to optimize segmentation parameters in an unsupervised manner and (2) to classify remote sensing data using several individual machine learning classifiers or their predictions combination through voting-schemes. We tested the performance and transferability of the processing chain using sub-metric multispectral and height data on two very different urban environments: Ouagadougou, Burkina Faso in sub-Saharan Africa and Liège, Belgium in Western Europe. Using a hierarchical classification scheme, the kappa values reached for both cities about 0.78 at the second level (9 and 11 classes) and 0.90 at the first level (5 classes).