Challenges for Updating 3D Cadastral Objects using LiDAR and Imagebased Point Clouds
Nowadays due to the increasing complex and multifunctional building environment in the urban areas it is required an accurate geometry and proper legal registration of the cadastral objects including third dimension and time aspect. 2D land-parcel data seems insufficient to address the variety of pr...
Lưu vào:
Tác giả chính: | |
---|---|
Định dạng: | BB |
Ngôn ngữ: | eng |
Thông tin xuất bản: |
2020
|
Chủ đề: | |
Truy cập trực tuyến: | http://tailieuso.tlu.edu.vn/handle/DHTL/4518 |
Từ khóa: |
Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
|
Tóm tắt: | Nowadays due to the increasing complex and multifunctional building environment in the urban areas it is required an accurate geometry and proper legal registration of the cadastral objects including third dimension and time aspect. 2D land-parcel data seems insufficient to address the variety of problems in high density residential areas. This fact motivates scientists worldwide to work on 3D Cadastral Data models for representation of 3D legal and physical information. Third dimension is important in cases of space subdivision with different owners and used for various purposes which requires its accurate registration. However, it is of great importance to maintain the 3D information up to date. With the rapid development in the fields of photogrammetry, laser scanning and computer vision high accurate 3D data can be obtained. However, numerous challenges appear while processing, storing, transferring and visualizing. Currently, efficient management of “big data” is widely discussed. In this respect developed algorithms in support of automatization of data processing, segmentation and visualization can be very helpful. Current paper focuses on usage of photogrammetric data for updating 3D information. More specifically, we investigate the opportunities for updating 3D cadastral objects using precise multi epoch airborne laser scanning 3D data, point clouds derived from high resolution imagery from dense matching algorithms and maps used to provide semantic information about the land cover class and 2D special information of the boundary of the cadastral objects. In the paper we describe the type and size of uncertainties when updating 3D cadastral models. This includes the uncertainty of the initial model, caused by inaccuracies in the measurements when building the initial models. Next, a careful registration with the newly acquired dataset is necessary in order to better describe changes of objects, instead. |
---|