Estimating Fire Background Temperature at a Geostationary Scale—An Evaluation of Contextual Methods for AHI-8
Results show that while contextual estimation provides accurate temperatures for pixels with no contextual obscuration, significant deterioration of results occurs when even a small portion of the target pixel’s surroundings are obscured. To maintain the temperature estimation accuracy, the use of n...
Lưu vào:
Tác giả chính: | |
---|---|
Đồng tác giả: | |
Định dạng: | BB |
Ngôn ngữ: | English |
Thông tin xuất bản: |
2020
|
Chủ đề: | |
Truy cập trực tuyến: | http://tailieuso.tlu.edu.vn/handle/DHTL/8819 |
Từ khóa: |
Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
|
Tóm tắt: | Results show that while contextual estimation provides accurate temperatures for pixels with no contextual obscuration, significant deterioration of results occurs when even a small portion of the target pixel’s surroundings are obscured. To maintain the temperature estimation accuracy, the use of no less than 65% of a target pixel’s total contextual coverage is recommended. The study also examines the use of expanding window sizes and their effect on temperature estimation. Results show that the accuracy of temperature estimation decreases significantly when expanding the examined window, with a 50% increase in temperature variability when using a larger window size than 5×5 pixels, whilst generally providing limited gains in the total number of temperature estimates (between 0.4%–4.4% of all pixels examined). The work also presents a number of case study regions taken from the AHI-8 disk in more depth, and examines the causes of excess temperature variation over a range of topographic and land cover conditions. |
---|