Leaf to canopy upscaling approach affects the estimation of canopy traits

The PLSR models were cross-validated based on repeated k-fold, and the normalized root mean square errors (nRMSEcv) obtained from each upscaling approach were compared using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. Results of the study showed that leaf-to-canopy upscal...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Gara, T. W.
Đồng tác giả: Skidmore, A. K.
Định dạng: BB
Ngôn ngữ:English
Thông tin xuất bản: 2020
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/8918
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
Mô tả
Tóm tắt:The PLSR models were cross-validated based on repeated k-fold, and the normalized root mean square errors (nRMSEcv) obtained from each upscaling approach were compared using one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. Results of the study showed that leaf-to-canopy upscaling approaches that consider the contribution of leaf traits from the exposed upper canopy layer together with the shaded middle canopy layer yield significantly (p < 0.05) lower error (nRMSEcv < 0.2 for canopy N, LMA and carbon) as well as high explained variance (R2 > 0.71) for both in-situ hyperspectral and simulated Sentinel-2 data. The widely-used upscaling approach that considers only leaf traits from the upper illuminated canopy layer yielded a relatively high error (nRMSEcv>0.2) and lower explained variance (R2 < 0.71) for canopy N, LMA and carbon. In contrast, canopy chlorophyll upscaled based on leaf samples collected from the upper canopy and total canopy LAI exhibited a more accurate relationship with spectral measurements compared with other upscaling approaches. Results of this study demonstrate that leaf to canopy upscaling approaches have a profound effect on canopy traits estimation for both in-situ hyperspectral measurements and simulated Sentinel-2 data in short woody vegetation. These findings have implications for field sampling protocols of leaf traits measurement as well as upscaling leaf traits to canopy level especially in short and less foliated vegetation where leaves from the lower canopy contribute to the canopy reflectance.