Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data

We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δ18O) data in one objective function (OF) was found to be the best...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Groh, J.
Đồng tác giả: Stumpp, C.
Định dạng: BB
Ngôn ngữ:English
Thông tin xuất bản: 2020
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/9618
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
Mô tả
Tóm tắt:We used different optimization strategies to investigate which observation types are necessary for simultaneously estimating soil hydraulic and solute transport parameters. Combining water content, matric potential, and tracer (e.g., δ18O) data in one objective function (OF) was found to be the best strategy for estimating parameters that can simulate all observed water flow and solute transport variables. A sequential optimization, in which first an OF with only water flow variables and subsequently an OF with transport variables was optimized, performed slightly worse indicating that transport variables contained additional information for estimating soil hydraulic parameters. Hydraulic parameters that were obtained from optimizing OFs that used either water contents or matric potential could not predict non‐measured water flow variables. When a bromide (Br−) tracer experiment was simulated using the optimized parameters, the arrival time of the bromide pulse was underestimated. This suggested that Br− sorbed onto clay minerals and amorphous oxides under the prevailing geochemical conditions with low pH values. When accounting for anion adsorption in the simulation, Br− concentrations were well predicted, which validated the dispersivity parameterization.