Testing the Fill‐and‐Spill Model of Subsurface Lateral Flow Using Ground‐Penetrating Radar and Dye Tracing
The site was then excavated to the soil–saprock interface and photographed to document the dye pathways. We observed vertical dye fingering near the infiltration trench. Downslope lateral PF at the soil–saprock boundary was limited to ~0.40 m, which is evidence that the soil–saprock interface did no...
Lưu vào:
Tác giả chính: | |
---|---|
Đồng tác giả: | |
Định dạng: | BB |
Ngôn ngữ: | English |
Thông tin xuất bản: |
2020
|
Chủ đề: | |
Truy cập trực tuyến: | http://tailieuso.tlu.edu.vn/handle/DHTL/9624 |
Từ khóa: |
Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
|
Tóm tắt: | The site was then excavated to the soil–saprock interface and photographed to document the dye pathways. We observed vertical dye fingering near the infiltration trench. Downslope lateral PF at the soil–saprock boundary was limited to ~0.40 m, which is evidence that the soil–saprock interface did not fill‐and‐spill. The extent, depth, and direction of the downslope PF indicated by GPR generally matched the dye staining patterns in the excavation, but the resolution of the 800‐MHz GPR antenna was insufficient to distinguish small fingers of dye. A revised fill‐and‐spill model was proposed for this site that incorporates the PF through fractured saprock before water encounters fresh bedrock surface. This study demonstrates that GPR integrated with dye tracer infiltration can provide a useful means of testing hillslope hydrological hypotheses and unraveling the complexity of PF at the hillslope scale in a field setting. |
---|