System-on-a-Chip (SoC)-Based Hardware Acceleration for an Online Sequential Extreme Learning Machine (OS-ELM)

Machine learning algorithms such as those for object classification in images, video content analysis, and human action recognition are used to extract meaningful information from data recorded by image sensors and cameras. Among the existing machine learning algorithms for such purposes, extreme lea...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Safaei, A.
Đồng tác giả: Wu, Q. M. J.
Định dạng: BB
Ngôn ngữ:en_US
Thông tin xuất bản: IEEE Xplore 2020
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/9870
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
Mô tả
Tóm tắt:Machine learning algorithms such as those for object classification in images, video content analysis, and human action recognition are used to extract meaningful information from data recorded by image sensors and cameras. Among the existing machine learning algorithms for such purposes, extreme learning machines (ELMs) and online sequential ELMs (OS-ELMs) are well known for their computational efficiency and performance when processing large datasets. The latter approach was derived from the ELM approach and optimized for real-time application. However, OS-ELM classifiers are computationally demanding, and the existing state-of-the-art computing platforms are not efficient enough for embedded systems, especially for applications with strict requirements in terms of low power consumption, high throughput, and low latency. This paper presents the implementation of an ELM/OS-ELM in a customized system-on-a-chip field-programmable gate array-based architecture to ensure efficient hardware acceleration. The acceleration process comprises parallel extraction, deep pipelining, and efficient shared memory communication.