Low-Rank Matrix Learning Using Biconvex Surrogate Minimization

Many machine learning problems involve learning a low-rank positive semidefinite matrix. However, existing solvers for this low-rank semidefinite program (SDP) are often expensive. In this paper, by factorizing the target matrix as a product of two matrices and using a Courant penalty to penalize for...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Hu, E.
Đồng tác giả: Kwok, J. T.
Định dạng: BB
Ngôn ngữ:en_US
Thông tin xuất bản: IEEE Xplore 2020
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/9906
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!