Hybrid geo-information processing :crowdsourced supervision of geo-spatial machine learning tasks

This paper introduces an approach to crowdsource the supervision of machine learning classification and regression tasks in order to process geo-social media streams. It builds on a review and comparison of four existing approaches to process geo-social media streams in order to identify specific op...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Ostermann, Frank O.
Định dạng: BB
Ngôn ngữ:eng
Thông tin xuất bản: 2020
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/4718
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
Mô tả
Tóm tắt:This paper introduces an approach to crowdsource the supervision of machine learning classification and regression tasks in order to process geo-social media streams. It builds on a review and comparison of four existing approaches to process geo-social media streams in order to identify specific opportunities and challenges. An original conceptual framework situates the machine learning tasks within a geoinformation processing workflow. The paper presents and discusses concrete techniques and software solutions for implementing it. Keywords: crowdsourcing, supervised machine learning, geo-social media streams, user-generated geographic content, volunteered geographic information.