Smartphone Transportation Mode Recognition Using a Hierarchical Machine Learning Classifier and Pooled Features From Time and Frequency Domains

This paper develops a novel two-layer hierarchical classifier that increases the accuracy of traditional transportation mode classification algorithms. This paper also enhances classification accuracy by extracting new frequency domain features. Many researchers have obtained these features from global...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Ashqar, H. I.
Đồng tác giả: Almannaa, M. H.
Định dạng: BB
Ngôn ngữ:en_US
Thông tin xuất bản: IEEE Explore 2020
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/9983
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
Mô tả
Tóm tắt:This paper develops a novel two-layer hierarchical classifier that increases the accuracy of traditional transportation mode classification algorithms. This paper also enhances classification accuracy by extracting new frequency domain features. Many researchers have obtained these features from global positioning system data; however, this data was excluded in this paper, as the system use might deplete the smartphone’s battery and signals may be lost in some areas. Our proposed two-layer framework differs from previous classification attempts in three distinct ways: 1) the outputs of the two layers are combined using Bayes’ rule to choose the transportation mode with the largest posterior probability; 2) the proposed framework combines the new extracted features with traditionally used time domain features to create a pool of features; and 3) a different subset of extracted features is used in each layer based on the classified modes. Several machine learning techniques were used, including k-nearest neighbor, classification and regression tree, support vector machine, random forest, and a heterogeneous framework of random forest and support vector machine. Results show that the classification accuracy of the proposed framework outperforms traditional approaches. Transforming the time domain features to the frequency domain also adds new features in a new space and provides more control on the loss of information. Consequently, combining the time domain and the frequency domain features in a large pool and then choosing the best subset results in higher accuracy than using either domain alone. The proposed two-layer classifier obtained a maximum classification accuracy of 97.02%.